

Circuit Diagrams

BA 9053

MK 9053N
BA 9053/4_ _ z. B.:
Terminals $\overline{\mathrm{1}} / \overline{\mathrm{k}}$: $0.1 \ldots 1 \mathrm{~A}$ Terminals i2/k: 0.5 ... 5 A Terminals i3/k: 1 ... 10 A

Connection Terminals
Terminal designation Signal designation A1, A2 Auxiliary voltage i, k Current measuring input $11,12,14$ 1st changeover contact $21,22,24$ 2nd changeover contact at MK 9053/1_ - : Z1, Z2, Z3 Remote potentiometer for response value

Safety Notes

Please observe when connecting a remote potentiometer to MK 9053N/1__: Measuring circuit and remote potentiometer not galvanically separated. The voltage on on measuring circuit $i, k / P E$ has connection to the remote potentiometer. The remote potentiometer has to be connected volt- and ground-free.

Your Advantages

- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60 255-1, IEC/EN 60 947-1
- to: monitor DC and AC
- BA 9053 with measuring ranges from 2 mA to 25 A
- BA 9053 optionally with 3 measuring ranges 0.1 up to 25 A
- MK 9053N with measuring ranges from 2 mA up to 10 A
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between auxiliary circuit - measuring ciruit
- Auxiliary supply AC/DC; BA 9053 with AC
- BA 9053 optionally with start-up delay (MK = standard)
- with time delay, up to max. 100 sec
- BA 9053 optionally with safe separation to IEC/EN 61140
- MK 9053N optionally with remote potentiometer
- As option with manual reset
- Option with fixed settings possible
- LED indicators for operation and contact position
- MK 9053N as option with pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- Width BA 9053: 45 mm Width MK 9053N: 22.5 mm

Approvals and Markings

Applications

- Monitoring current in AC or DC systems
- For industrial and railway applications

Function

The relays measure the arithmetic mean value of the rectified measuring current. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overcurrent relays but can also be used for undercurrent detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay t_{a} operates only when connecting the auxiliary supply. It disables tripping e.g. caused by an increased starting current of a motor. The response delay t_{v} is active after exceeding a response value. On overcurrent relays the delay is active when the current goes over the tripping value, on undercurrent relays when the current drops below the hysteresis value.

Indicators

green LED:
yellow LED:
on, when auxiliary supply connected on, when output relay acitvated

Function Diagram without Start-up Delay

Function Diagram with Start-up Delay

On model BA 9053/6_ _ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

Technical Data

Input (i, k)

BA 9053 for $A C$ and DC				
Measuring range*)		RM (internal measu- ring resistor (shunt)	max. perm. cont. current Device mounted without distance	max. permiss. current 3 s On, 100 s Off
AC	DC			
$2-20 \mathrm{~mA}$	$1.8-18 \mathrm{~mA}$	1.5Ω	0.7 A	1 A
20-200 mA	18-180 mA	0.15Ω	2 A	4 A
30-300 mA	27-270 mA	0.1Ω	2.5 A	8 A
50-500 mA	45-450 mA	0.1Ω	2.5 A	8 A
80-800 mA	72-720 mA	$40 \mathrm{~m} \Omega$	4 A	12 A
0.1-1 A	0.09- 0.9 A	$30 \mathrm{~m} \Omega$	4 A	12 A
0.5- 5 A	0.45-4.5 A	$6 \mathrm{~m} \Omega$	10 A	30 A
1-10 A	0.9-9 A	$3 \mathrm{~m} \Omega$	20 A	40 A
1.5-15 A	1.35-13.5 A	$3 \mathrm{~m} \Omega$	25 A	40 A
2-20 A	1.8-18 A	$3 \mathrm{~m} \Omega$	25 A	40 A
2.5-25 A	2.25-22.5 A	$3 \mathrm{~m} \Omega$	25 A	40 A
* DC or AC c (other frequ on request	urrent 50 ... 500 uency ranges of t)	$\begin{aligned} & 0 \mathrm{~Hz} \\ & 10 \ldots 5000 \end{aligned}$	$\mathrm{Hz}, \text { e.g. } 16^{2 / 3} \mathrm{~Hz}$	

BA 9053/4_-		with 3 measuring ranges:	
Range:	Terminals i1/k	Terminals i2/k	Terminals i3/k
AC $20 \mathrm{~mA} /$			
$200 \mathrm{~mA} / 1 \mathrm{~A}:$	AC $2.0 \ldots 20 \mathrm{~mA}$	AC $20 \ldots 200 \mathrm{~mA}$	AC $0.1 \ldots 1 \mathrm{~A}$
	DC $1.8 \ldots 18 \mathrm{~mA}$	DC $18 \ldots 180 \mathrm{~mA}$	DC $0.09 \ldots 0.9 \mathrm{~A}$
AC $1 / 5 / 10 \mathrm{~A}:$	AC $0.1 \ldots 1 \mathrm{~A}$	AC $0.5 \ldots 5 \mathrm{~A}$	AC $1.0 \ldots 10 \mathrm{~A}$
	DC $0.09 \ldots 0.9 \mathrm{~A}$	DC $0.45 \ldots 4.5 \mathrm{~A}$	DC $0.9 \ldots 9 \mathrm{~A}$
AC $5 / 10 / 25 \mathrm{~A}:$	AC $0.5 \ldots 5 \mathrm{~A}$	AC $1.0 \ldots 10 \mathrm{~A}$	AC $2.5 \ldots 25 \mathrm{~A}$
	DC $0.45 \ldots 4.5 \mathrm{~A}$	DC $0.9 \ldots 9 \mathrm{~A}$	DC $2.25 \ldots 22.5 \mathrm{~A}$

MK 9053N with 1 Measuring range for AC and DC					
Measuring range*)		RM (internal measuring resistor (shunt)	max. perm. cont. current		max. permiss. current 3 s On, 100 s Off
AC	DC		Device mount. without distance	with 5 mm distance	
2-20mA	1.8-18 mA	1.5Ω	0.5 A	0.7 A	1 A
20-200 mA	$18-180 \mathrm{~mA}$	0.15Ω	1.5 A	2 A	4 A
30-300 mA	27-270 mA	$0.1 \quad \Omega$	2 A	2.5 A	8 A
50-500 mA	45-450 mA	0.1 ת	2 A	2.5 A	8 A
0.1-1 A	0.09-0.9 A	$30 \mathrm{~m} \Omega$	3 A	4 A	8 A
0.5- 5 A	0.45-4.5 A	$6 \mathrm{~m} \Omega$	8 A	11 A	20 A
1-10 A	0.9-9 A	$3 \mathrm{~m} \Omega$	12 A	15 A	20 A
* DC or AC (Other frequ on request)	urrent 50 ... 5000 uency ranges of	$\begin{aligned} & \mathrm{Hz} \\ & 10 \ldots 5000 \end{aligned}$	Hz, e.g	$16 \text { 2/3 }$	

Extending of measuring range:

Measuring principle:
 Adjustment:

Temperature influence:

For DC-current higher then the highest measuring range the voltage relay BA 9054 or MK 9054 N measuring range
$15 \ldots 150 \mathrm{mV}$ or $6 \ldots 60 \mathrm{mV}$ can be used with external Shunt.
For AC current higher then the highest measuring range can be used a current transformer e. g. with secondary winding of 1 A or 5 A togehter with BA 9053 or MK 9053N. The nominal load of the CT should be $\geq 0.5 \mathrm{VA}$.
arithmetic mean value
The AC - devices can also monitor DC current. The scale offset in this case is: ($I=0.90 I_{\text {eff }}$) $<0.05 \% / \mathrm{K}$

Technical Data

Setting Ranges

Setting

Response value: infinite variable $0.1 \mathrm{I}_{\mathrm{N}} \ldots 1 \mathrm{I}_{\mathrm{N}}$
Hysteresis
at AC:
at DC:
Accuracy:
Response value at
Potentiometer right stop (max): $0 \ldots+8 \%$
Potentiometer left stop (min): $\quad-10 \ldots .+8 \%$
Repeat accuracy: $\leq \pm 0.5 \%$
Recovery time
at devices with manual reset
(Reset by braking
of the auxiliary voltage)
BA 9053/6_ _; MK 9053N/6_ _: $\leq 1 \mathrm{~s}$
(dependent to function and auxiliary voltage) infinite variable at logarythmic scale from $0 \ldots 20 \mathrm{~s}, 0 \ldots 30 \mathrm{~s}, 0 \ldots 60 \mathrm{~s}, 0 \ldots 100 \mathrm{~s}$ setting $0 \mathrm{~s}=$ without time delay

Start-up delay t_{a} :

BA 9053/1 _ _:

MK 9053N:
$1 \ldots 20 \mathrm{~s} ; 1 \ldots 60 \mathrm{~s} ; 1 \ldots 100 \mathrm{~s}$, adjustable on logarithmic scale. t_{a} is started when the supply voltage is connected. During elapse of time the output contact is in good state $0.1 \ldots 20 \mathrm{~s} ; 0.1 \ldots 60 \mathrm{~s} ; 0.1 \ldots 100 \mathrm{~s}$

Auxiliary Circuit BA 9053 and MK 9053N

Auxiliary voltage $\mathrm{U}_{\mathrm{H}}(\mathrm{A} 1, \mathrm{~A} 2)$
BA 9053, Nominal voltages:
Voltage range:
Nominal frequency:
Frequency range:
Nominal consumption:
AC 24, 42, 110, 127, 230, 400 V $0.8 \ldots 1.1 U_{H}$
$50 / 60 \mathrm{~Hz}$
$\pm 5 \%$
2.5 VA

BA 9053:		
Nominal voltage	Voltage range	Frequency range
AC/DC $24 \ldots 80 \mathrm{~V}$	AC $18 \ldots 100 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $18 \ldots 130 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
AC/DC $80 \ldots 230 \mathrm{~V}$	AC $40 \ldots 265 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $40 \ldots 300 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
DC 12 V	DC $10 \ldots 18 \mathrm{~V}$	battery voltage

MK 9053N:		
Nominal voltage	Voltage range	Frequency range
$\mathrm{AC} / \mathrm{DC} 24 \ldots 80 \mathrm{~V}$	AC $18 \ldots 100 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $18 \ldots 130 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
A AC/DC $80 \ldots 230 \mathrm{~V}$	AC $60 \ldots 265 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	DC $60 \ldots 300 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$

Nominal consumption:

4 VA; 1.5 W at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

Technical Data		
Output		
Contacts		
BA 9053:	2 changeover contacts	
MK 9053N:	2 changeover contacts	
Thermal current t_{th} :		
BA 9053:	$2 \times 5 \mathrm{~A}$	
MK 9053N:	$2 \times 4 \mathrm{~A}$	
Switching capacity		
BA 9053		
to AC 15:		
NO contact:	$2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$	IEC/EN 60 947-5-1
NC contact:	$1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$	IEC/EN 60 947-5-1
MK 9053N		
to AC 15:	1.5 A / AC 230 V	IEC/EN 60 947-5-1
BA 9053, MK 9053N		
to DC 13:	$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$	IEC/EN 60 947-5-1
Electrical life		
BA 9053		
to AC 15 at $3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:	5×10^{5} switch. cycl. IEC/EN 60 947-5-1	
MK 9053N		
to AC 15 at $3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:	10^{5} switching cycles IEC/EN 60 947-5-1	
Short-circuit strength		
Mechanical life		
BA 9053:	50×10^{6} switching cycles	
MK 9053N:	30×10^{6} switching cycles	
General Data		
Operating mode:	Continuous operation	
Temperature range:		
BA 9053 (operation):		
$\leq 10 \mathrm{~A}$:	$-40 \ldots+60^{\circ} \mathrm{C}$	
$\geq 15 \mathrm{~A}$:	$-40 \ldots+50^{\circ} \mathrm{C}$ (higher temperature with limitations	
MK 9053N (operation):	(higher temperature with limitations on request)	
BA 9053, MK 9053N (storage):	$-40 \ldots+70^{\circ} \mathrm{C}$	
Altitude:	<2,000 m	
Clearance and creepage distances		
rated impulse voltage /		
BA 9053 meas. range $\leq 10 \mathrm{~A}$:	$6 \mathrm{kV} / 2$	IEC 60 664-1
BA 9053 meas. range $\geq 15 \mathrm{~A}$:	$4 \mathrm{kV} / 2$	IEC 60 664-1
MK 9053N:	$4 \mathrm{kV} / 2$	IEC 60 664-1
EMC		
Electrostatic discharge:	8 kV (air)	IEC/EN 61 000-4-2
HF irradiation		
$80 \mathrm{MHz} \mathrm{..}$.1 GHz :	$20 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
1 GHz ... 2.7 GHz :	$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
Fast transients:	4 kV	IEC/EN 61 000-4-4
Surge voltages		
between		
wires for power supply:	2 kV	IEC/EN 61 000-4-5
between wire and ground:	4 kV	IEC/EN 61 000-4-5
HF wire guided:	10 V	IEC/EN 61 000-4-6
Interference suppression:	Limit value class B	EN 55011
Degree of protection		
Housing:	IP 40	IEC/EN 60529
Terminals:	IP 20 IEC/EN 60529	
Housing:	Thermoplastic with Vo behaviour according to UL subject 94	
Vibration resistance:	Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency $10 \ldots 55 \mathrm{~Hz}$	
Climate resistance		
BA 9053		
$\leq 10 \mathrm{~A}$:	40 / 060 / 04	IEC/EN 60 068-1
≥ 15 A:	40 / 050 / 04	IEC/EN 60 068-1
MK 9053N:	20/060/04	IEC/EN 60 068-1
Terminal designation:	EN 50005	

Technical Data

Wire connection BA 9053:
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve
MK 9053N:
Screw terminals
(integrated): $1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or $2 \times 2.5 \mathrm{~mm}^{2}$ solid
Insulation of wires
or sleeve length:
8 mm
Plug in with screw terminals
max. cross section
for connection: $\quad 1 \times 2.5 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
Insulation of wires
or sleeve length: $\quad 8 \mathrm{~mm}$
Plug in with cage clamp terminals
max. cross section for connection:
min. cross section for connection:
Insulation of wires
or sleeve length:
Wire fixing:
BA 9053:
MK 9053N:

Stripping length:
Fixing torque:
Mounting:
Weight
BA 9053: AC-device: 280 g
AC/DC-device: 200 g
150 g

Dimensions
Width x height x depth

BA 9053:	$45 \times 75 \times 120 \mathrm{~mm}$
MK 9053N:	$22.5 \times 90 \times 97 \mathrm{~mm}$

Classification to DIN EN 50155 for BA 9053

Vibration and
shock resistance: Category 1, Class B IEC/EN 61373
Ambient temperature:
T3 and TX with operational limitations
Protective coating of the PCB: No

UL-Data

Auxiliary voltage $\mathbf{U}_{\mathrm{H}}(\mathbf{A} 1, \mathrm{~A} 2)$
BA 9053:
Thermal current I_{th} :

BA 9053:	$2 \times 5 \mathrm{~A}$
MK 9053N:	$2 \times 4 \mathrm{~A}$

Clearance and creepage distances
BA 9053, MK 9053N: 4 kV / 2
HF irradiation
BA 9053 (80 MHz ... 2.7 GHz)
Switching capacity:
$10 \mathrm{~V} / \mathrm{m}$ IEC 60 664-1

Ambient temperature
Pilot duty B150
$-40 \ldots+60^{\circ} \mathrm{C}$ IEC/EN 61 000-4-3

Technical data that is not stated in the UL-Data, can be found in the technical data section.

CCC-Data

Switching capacity
to AC 15:
1.5 A / AC 230 V

IEC/EN 60 947-5-1 to DC 13:

1 A / DC 24 V
IEC/EN 60 947-5-1

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Type	
BA 9053/010 AC 0.5 ... 5 A A Article number: - for Overcurrent monitoring - Measuring range: - Auxiliary voltage U_{H} : - Time delay by I_{an} : - Width:	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \\ & 0053128 \\ & \text { AC } 0.5 \ldots 5 \mathrm{~A} \\ & \text { AC } 230 \mathrm{~V} \\ & 0 \ldots 20 \mathrm{~s} \\ & 45 \mathrm{~mm} \end{aligned}$
BA 9053/012 AC 0.5... 5 A A Article number: - for Undercurrent monitoring - Measuring range: - Auxiliary voltage U_{H} : - Time delay by I_{ab} : - Width:	AC 230 V 0053192 AC $0.5 \ldots 5$ A AC 230 V $0 . .20 \mathrm{~s}$ 45 mm
MK 9053N. $12 / 010$ AC $0.5 \ldots 5$ A Article number: - for Overcurrent monitoring - Measuring range:: - Auxiliary voltage U_{H} : - Time delay by t_{v} : - Start up delay t_{a} : - Width:	$\begin{aligned} & \text { AC/DC } 80 \ldots 230 \mathrm{~V} \mathrm{t}_{\mathrm{v}} 0 \ldots 20 \mathrm{~s} \mathrm{t}_{\mathrm{a}} 0.1 \ldots 20 \mathrm{~s} \\ & 0063176 \end{aligned}$ $\begin{aligned} & \text { AC } 0.5 \ldots 5 \mathrm{~A} \\ & \text { AC/DC } 80 \ldots 230 \mathrm{~V} \\ & 0 \ldots 20 \mathrm{~s} \\ & 0.1 \ldots 20 \mathrm{~s} \\ & 22.5 \mathrm{~mm} \end{aligned}$

Ordering Example for Variants

BA 9053

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

Cage clamp ($\mathrm{PC} /$ plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Accessories

AD 3:

Remote potentiometer $470 \mathrm{~K} \Omega$ Article number: 0050174

Setting

Example:
Current relay BA 9053 / MK 9053N AC 0.5 ... 5 A
AC according to type plate:
i.e. the unit is calibrated for AC
$0.5 \ldots 5 \mathrm{~A}=$ measuring range
Response value AC 3 A
Hysteresis AC 1.5 A
Settings:
upper potentiometer: $\quad 0.6 \quad(0.6 \times 5 \mathrm{~A}=3 \mathrm{~A})$
lower potentiometer:

$$
0.5 \quad(0.5 \times 3 \mathrm{~A}=1.5 \mathrm{~A})
$$

The AC - devices can also monitor DC current. The scale offset in this case is: $\bar{T}=0.90 \times \mathrm{I}_{\text {eff }}$

AC $0.5 \ldots 5 \mathrm{~A}$ is equivalent to $\mathrm{DC} 0.45 \ldots 4.5 \mathrm{~A}$
Response value DC 3 A
Hysteresis DC 1.5 A

Settings:
upper potentiometer: $\quad 0.66 \quad(0.66 \times 4.5 \mathrm{~A}=3 \mathrm{~A})$
lower potentiometer: $\quad 0.5 \quad(0.5 \times 3 \mathrm{~A}=1.5 \mathrm{~A})$

Characteristic

Time delay of measuring circuit
X on: Measured value rise

X off: Measured value drops $F=\frac{\text { Mesaured value (befor measured value drops) }}{\text { Setting value (hysteresis) }}$
The diagram shows the typical delay of a standard devices depending on the measured values " X on and X off" at sudden rise or drop of the signal. At slow change of the measured value the delay is shorter.
The total reaction time of the device results from the adjustable delay t_{v} and the delay created by the measuring circuit.

The diagram shows an average delay. The delay times could differ on the different variants.

Example for "X on" (overcurrent detection with BA9053/010):
Adjusted setting value X on $=2 \mathrm{~A}$.
Due to a stalled motor the current rises suddenly to 10 A .
$F=\frac{\text { Measured value (after rise of measured value) }}{\text { Setting value }}=\frac{10 \mathrm{~A}}{2 \mathrm{~A}}=5$
Reading from the diagram:
The output relay switches on after 31 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

Example for "X off" (undercurrent detection with BA9053/012):
Adjusted hysteresis setting value is 10 A .
The current drops suddenly from 23 A to 0 A .
$F=\frac{\text { Mesaured value (befor measured value drops) }}{\text { Setting value (hysteresis) }}=\frac{23 \mathrm{~A}}{10 \mathrm{~A}}=2.3$
Reading from the diagram:
The output relay switches off after 70 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

